
Pattern Matching
on Event Streams & Time Series & …

Bernhard Seeger
University of Marburg

Overview of This Talk

• Introduction to Event Processing

• Introduction to (Event) Pattern Matching

• Highlight Features of current state-of-the-art

• Interval-based Pattern Matching Developed @ UMR

• Group Patterns

• Brief Outlook: Pattern Matching on Property Graphs

2

Introduction to Event Processing

3

1. Motivation

• reactive monitoring of time-critical
business processes

© Bernhard Seeger

• predictions about the near future
and recommendations for actions

4

Situations of Interest

5

© Bernhard Seeger

Time
E-2 E-1 E E+1 E+2 E+3 E+4 E+7 E+8 E+9 E+10

Impact

Options

Reaction

Costs

Benefit

Opportunity

Root
Cause
Event

Many application domains

• Algorithmic trading

• Logistics

• Traffic management

• Internet of Things & Industry 4.0

• System Monitoring & Security

6

Example: Traffic Management

• Data from Sensors

• Continuous Flow  Data Stream

• variable data rates

• time and space as default dimensions

• Queries

• continuously processed

“At which positions of the highway was
the average speed below 30 km/h
within the last 15 minutes?“

HighwayStream(lane, speed,

length, timestamp)

What is an Event?

• Basic events (aka temporal data item): (o, p, t)

• Object o

• Property p

• Time point or a time interval t

• Derived events (aka complex events)

• Event stream

• Temporally ordered sequence of events with the same schema
received from an active event source

8

Basic Idea of Event Processing

• Event Sources

• Continuous production of events

• Event Processing Agents (EPAs)

• Processing building blocks: Consume input events & process them & deliver output events

• Event Sinks

• Consumers of events

9

Comparison

Time Series Database Systems

• Data items are persistent

• Time Series

• Queries are ephemeral

• Throughput optimization

10

Event Processing Systems

• Data items are ephemeral

• Event Streams

• Queries are persistent

• Latency optimization

• Applications need both systems working hand in hand

• COMMONITIES

• Data Model

• Query Language

Problems and Issues

• Performance

• High Throughput vs. Low Latency

• Event Store (= Time Series Database)

• Persistent management of very fast arriving events

• Functionality

• Powerful pattern matching

• Spatial processing

11

Problems and Issues

• Performance

• High Throughput vs. Low Latency

• Event Store

• Persistent Management of Events

• Functionality

• Powerful pattern matching

• Spatial and graph processing

12

The Performance Issue of CEP

13

low
latency

high throughput

Esper

Spark

?

low throughput

high
latency

Spark Streaming

The Persistence Issue of Event Processing

• Event processing systems are in-memory only.

• Volatile Data and Persistent Queries

• Applications require persistence of events.

• Analysis of historical data  Anomaly Patterns

• Revision and reproducibility

• Special Requirements

• Extremely high input rates (millions of events/s)

• Time-based queries on massive databases

• Are standard DBMS or NoSQL systems suitable?

14

The Functionality Issue

• Pattern Matching is the Core Operator for Event Processing

• Example of an alarm pattern

Detect a sharp increase in temperature together with sufficiently large amount of
smoke within a short period of time.

• Example of an aggressive driver pattern (see AAA)

A sharp acceleration followed by hard braking, both accompanied by a period of
speeding.

15

Selection of Literature

• Luckham, D. (2002). The power of events (Vol. 204). Reading: Addison-Wesley.

• Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002, June). Models
and issues in data stream systems. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems (pp. 1-
16). ACM.

• Krämer, J., & Seeger, B. (2009). Semantics and implementation of continuous
sliding window queries over data streams. ACM Transactions on Database
Systems (TODS), 34(1), 4.

• Anicic, D., Fodor, P., Rudolph, S., & Stojanovic, N. (2011, March). EP-SPARQL: a
unified language for event processing and stream reasoning. In Proceedings of
the 20th international conference on World wide web (pp. 635-644). ACM.

• Cugola, G., & Margara, A. (2012). Processing flows of information: From data
stream to complex event processing. ACM Computing Surveys (CSUR), 44(3), 15.

16

Pattern Matching: Introduction

17

Pattern Matching

• Process a stream of data and find a specific pattern within the stream

• Basically a sequence of conditions mapped to a subsequence of the input stream

• Example

• Find a sequence of temperature sensor events for which the following holds:

• The first event provides a temperature below 50°

• The subsequent events deliver a monotonically increasing temperature

• Finally, the temperature raises above 90°

• Difference to traditional relational data processing

• (temporal) order is important

Pattern Matching - Example

A: value < 50°

B: value > previous value

C: value >= 90°

Pattern Matching - Example

A: value < 50°

B: value > previous value

C: value >= 90°

AB[…]BCPattern:

Pattern Matching - Example

A: value < 50°

B: value > previous value

C: value >= 90°

AB[…]BCPattern:

Filter

Pattern Matching - Example

A: value < 50°

B: value > previous value

C: value >= 90°

AB[…]BCPattern:

Aggregation

Pattern Matching - Example

A: value < 50°

B: value > previous value

C: value >= 90°

AB[…]BCPattern:

Join

Pattern Matching - Example

A: value < 50°

B: value > previous value

C: value >= 90°

AB[…]BCPattern:

Pattern Matching - Example

A: value < 50°

B: value > previous value

C: value >= 90°

AB[…]BCPattern:

Pattern Matching - Example

A

A: value < 50°

B: value > previous value

C: value >= 90°

AB[…]BCPattern:

Pattern Matching - Example

A -

A: value < 50°

B: value > previous value

C: value >= 90°

AB[…]BCPattern:

Pattern Matching - Example

A - CBBA

A: value < 50°

B: value > previous value

C: value >= 90°

AB[…]BCPattern:

Pattern Matching - Example

A - CBBA
MATCH

A: value < 50°

B: value > previous value

C: value >= 90°

AB[…]BCPattern:

MATCH RECOGNIZE
STATE-OF-THE-ART PATTERN MATCHING

30

Introduction

• Row based pattern matching language supporting

• Aggregations

• Dependencies between pattern variables and arbitrary rows

• Fine grained control of how, how many, and when results are delivered

• SQL:2016 Standard

• (Partially) implemented in a few database systems and event systems

• Oracle (since 12c)

• Esper

• Apache Flink

31

Example

SELECT *

FROM Sensors MATCH_RECOGNIZE (

PARTITION BY SENSOR_ID

MEASURES FIRST(A.TIME) AS START,

B.TIME AS END

PATTERN A+ B

DEFINE

A AS A.TEMP > PREV(A.TEMP)

B AS B.TEMP > 90

)

32

Find a steadily increasing temperature, eventually reaching a value above a threshold

Basic Match Recognize Syntax

SELECT …

FROM … MATCH_RECOGNIZE (

[PARTITION BY …]

[ORDER BY …]

MEASURES …

[ONE|ALL] ROW PER MATCH

AFTER MATCH SKIP TO …

PATTERN …

DEFINE …

)

33

Basic Match Recognize Syntax

SELECT …

FROM … MATCH_RECOGNIZE (

[PARTITION BY …]

[ORDER BY …]

MEASURES …

[ONE|ALL] ROW PER MATCH

AFTER MATCH SKIP TO …

PATTERN …

DEFINE …

)

34

Source relation/ event stream

Basic Match Recognize Syntax

SELECT …

FROM … MATCH_RECOGNIZE (

[PARTITION BY …]

[ORDER BY …]

MEASURES …

[ONE|ALL] ROW PER MATCH

AFTER MATCH SKIP TO …

PATTERN …

DEFINE …

)

35

Variable definitions

Basic Match Recognize Syntax

SELECT …

FROM … MATCH_RECOGNIZE (

[PARTITION BY …]

[ORDER BY …]

MEASURES …

[ONE|ALL] ROW PER MATCH

AFTER MATCH SKIP TO …

PATTERN …

DEFINE …

)

36

Pattern definition

Basic Match Recognize Syntax

SELECT …

FROM … MATCH_RECOGNIZE (

[PARTITION BY …]

[ORDER BY …]

MEASURES …

[ONE|ALL] ROW PER MATCH

AFTER MATCH SKIP TO …

PATTERN …

DEFINE …

)

37

Output definition

Basic Match Recognize Syntax

SELECT …

FROM … MATCH_RECOGNIZE (

[PARTITION BY …]

[ORDER BY …]

MEASURES …

[ONE|ALL] ROW PER MATCH

AFTER MATCH SKIP TO …

PATTERN …

DEFINE …

)

38

Optional partitioning/ordering
• Matchig is performed separately on each partition
• Data is reordered accordingly

Basic Match Recognize Syntax

SELECT …

FROM … MATCH_RECOGNIZE (

[PARTITION BY …]

[ORDER BY …]

MEASURES …

[ONE|ALL] ROW PER MATCH

AFTER MATCH SKIP TO …

PATTERN …

DEFINE …

)

39

Output
• only one row per successful match or
• all rows that participated

Basic Match Recognize Syntax

SELECT …

FROM … MATCH_RECOGNIZE (

[PARTITION BY …]

[ORDER BY …]

MEASURES …

[ONE|ALL] ROW PER MATCH

AFTER MATCH SKIP TO …

PATTERN …

DEFINE …

)

40

Where to continue processing
after a match was found?

Match Recognize Details – Pattern Definition

• Patterns are regular expressions over pattern variables

• Zero or one occurrence: A?

• Kleene: A*/ A+

• Quantifies: A{n,m}, A{n,}, A{,m}

• Alternatives: A|B

• Anchors: Before first event (^), after last event ($) of a partition

• Examples:

• A B* C // A followed by zero or more Bs, followed by C

• A (B|C)+ D // A followed by at least 1 B or C, followed by D

• A B{3,} C // A followed by at least 3 Bs, followed by C

• ^A+$ // The entire partition must satisfy A

41

Match Recognize Details – Variable Definitions

• Variables

• Building blocks for the pattern definition

• Representation of user defined conditions

• Basic Syntax: DEFINE <NAME> AS <CONDITION>

• Condition consists of Boolean expressions and the following PM specific constructs:

• PREV, NEXT

• refer to rows (events) that occur before/after the currently processed row

• operate on physical rows, not restricted to pattern variables

• FIRST, LAST

• navigate rows that were mapped to a pattern variable

• operate on logical rows, restricted to pattern variables

• Aggregates

• Access to running aggregates over a specific pattern variable

42

Variable Definitions with PREV and NEXT
• Access rows/events by physical relative offset

• A AS A.temp > PREV(A.temp) // refer to previous row

• A AS A.temp > PREV(A.temp, 50) // move back 50 events

• A AS PREV(A.temp * A.accuracy) > 90 // refer to multiple columns

• A AS A.temp > 2 * (PREV (A.temp, 2) // find outlier (> than twice

+ PREV (A.temp 1) // the average of its four

+ NEXT (A.temp, 1) // neighbors)

+ NEXT (A.temp, 2)) / 4

• A AS A.temp > PREV(B.temp) // refer to another variable:

// previous row of the last

// row mapped to B

43

Variable Definitions with FIRST and LAST

• Access rows with logical offset based on pattern variable

• DEFINE A AS A.TEMP > 90

B AS B.TEMP < LAST(A.TEMP) // Refer to the last

// occurrence of A

• DEFINE A AS A.TEMP > 90

B AS B.TEMP < LAST(A.TEMP,20) // with offset 20

44

Example

• Event Stream

• FIRST (A.Price) = FIRST (A.Price, 0) = LAST (A.Price, 2) = 10

• FIRST (A.Price, 1) = LAST (A.Price, 1) = 30

• FIRST (A.Price, 2) = LAST (A.Price, 0) = LAST (A.Price) = 50

• FIRST (A.Price, 3) is null, LAST (A.Price, 3) is null

45

Record sequence Value Variable Mapping

R1 10 A

R2 20 B

R3 30 A

R4 40 C

R5 50 A

Variable Definitions with Aggregates

• Define Variable based on running aggregates

• DEFINE A AS A.TEMP > AVG(A.TEMP) // self reference

• DEFINE A AS true

B AS B.TEMP >= 2*AVG(A.TEMP) // refer to another

// variable A

46

Match Recognize Details – Output Definition

• Output defined via MEASURES clause

• access to defined pattern variables

• Basic syntax: <EXPRESSION> AS <NAME>

• Expressions refer to specific values via

• FIRST/LAST expressions

• Aggregates over attributes of a pattern variable

• Expressions can be running or final

• If the user specifies to output all rows contributing to a match

• running means: Use the values seen so far

• final means: Always use the values obtained after processing the last row

47

Match Recognize Details – Output Definition

MEASURES FIRST(A.TIME) AS START,

B.TIME AS END,

AVG(A.TEMP) as AVG_TMP

PATTERN A+ B

DEFINE A AS A.TEMP > PREV(A.TEMP)

B AS B.TEMP > 90

48

Match Recognize Details – Output Definition

MEASURES FIRST(A.TIME) AS START,

B.TIME AS END,

AVG(A.TEMP) as AVG_TMP

PATTERN A+ (B|C)

DEFINE A AS A.TEMP > PREV(A.TEMP)

B AS B.TEMP > 90

C AS C.TEMP < FIRST(A.TEMP)

49

B.TIME is undefined, if
the pattern ended with C

Match Recognize Details – Output Definition

MEASURES FIRST(A.TIME) AS START,

COALESCE(B.TIME,C.TIME) AS END,

AVG(A.TEMP) as AVG_TMP

PATTERN A+ (B|C)

DEFINE A AS A.TEMP > PREV(A.TEMP)

B AS B.TEMP > 90

C AS C.TEMP < FIRST(A.TEMP)

50

Use first non-null value
instead

Match Recognize Details – Continue Search

• Position to start looking for the next match after a successful match:

• AFTER MATCH SKIP TO NEXT ROW

• Resume pattern matching at the row after the first row of the current match.

• AFTER MATCH SKIP PAST LAST ROW (Default)

• Resume pattern matching at the next row after the last row of the current match.

• AFTER MATCH SKIP TO FIRST <pattern_variable>

• Resume pattern matching at the first row that is mapped to the pattern variable.

• AFTER MATCH SKIP TO LAST <pattern_variable>

• Resume pattern matching at the last row that is mapped to the pattern variable.

51

Another Example

• Find flickering alarms

• SELECT * FROM ALARMS MATCH_RECOGNIZE(

PARTITION BY ALARM_ID

ORDER BY TIME

AFTER MATCH SKIP TO FIRST B

MEASURES FIRST(A.ALARM_ID) AS ID,

FIRST(A.TIME) AS BEGIN,

LAST(B.TIME) AS END,

PATTERN (A+B+){50,}

DEFINE A AS A.alarm = true,

B AS B.alarm = false AND B.time – FIRST(A.TIME) <= 5 min

)

52

Summary – Match Recognize

• Pattern definitions via regular expression over pattern variables

• Complex variable- and result-definitions via:

• Aggregates

• Physical offsets (PREV,NEXT)

• Logical offsets (FIRST,LAST)

• Control output via:

• Resume options (AFTER MATCH …)

• ALL ROWS/ONE ROW

• Not discussed so far: Window-Clause

• Define a time window in which the pattern must occur completely

53

Literature

• Agrawal, J., Diao, Y., Gyllstrom, D., & Immerman, N. (2008, June). Efficient
pattern matching over event streams. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data (pp. 147-160).
ACM.

• Mei, Y., & Madden, S. (2009, June). Zstream: a cost-based query
processor for adaptively detecting composite events. In Proceedings of
the 2009 ACM SIGMOD International Conference on Management of
data (pp. 193-206). ACM.

• Michels, J., Hare, K., Kulkarni, K., Zuzarte, C., Liu, Z. H., Hammerschmidt,
B., & Zemke, F. (2018). The New and Improved SQL: 2016 Standard. ACM
SIGMOD Record, 47(2), 51-60.

• SO/IEC TR 19075-5:2016, Information technology —Database languages
— SQL Technical Reports —Part5: Row Pattern Recognition in SQL,
http://standards.iso.org/ittf/PubliclyAvailableStandards/

54

Complex Temporal Pattern
Matching

55

Motivation

• Sequential Patterns are limited to before/after/at the same time
relationships

• Many real-world applications require the definition of complex temporal
relationships between situations

• Running Example: Traffic monitoring

• Cumbersome/impossible to express with sequential patterns

• Queries are hard to understand

• Evaluation performance is poor

56

Example: Detect Aggressively Driving Cars

• Input: sensor data from connected cars

• ID, position, speed, acceleration, etc.

• Indicators for aggressive driving according to AAA

• “[…] suddenly changing speeds” and “Driving […] in excess of posted speed limit”

• Query: „A sharp acceleration followed by hard braking, both
accompanied by a period of speeding”

57

Option 1: Raw Events + Pattern Matching

• Process raw event stream

• Infinite sequence of timestamped relational tuples

• Detection of sequential patterns

• Pattern expressed via regular expressions or equivalent

• Poor evaluation performance

• Awkward query definitions

• FROM CARS PARTITION BY CAR_ID

PATTERN A+ B+ C+ D+ E+

WHERE A.SPEED <= 75 mph

AND A.ACCEL > 8 m/s²

AND B.SPEED > 75 mph

AND B.ACCEL > 8 m/s²

AND C.SPEED > 75 mph

AND C.ACCEL >= -9 m/s²

AND C.ACCEL <= 8 m/s²

AND D.SPEED > 75 mph

AND D.ACCEL < -9 m/s²

A B C D E

58

Option 2: Interval Based Systems

• Process streams of interval events

• Infinite sequence of relational tuples associated with a time interval

• Pattern stated as interval endpoint order

• 𝐴. 𝑠𝑡𝑎𝑟𝑡 < 𝑆. 𝑠𝑡𝑎𝑟𝑡 < 𝐴. 𝑒𝑛𝑑 < 𝐷. 𝑠𝑡𝑎𝑟𝑡 < …

• Intervals created externally

• Visible to the system after interval ended

 No early results

 No optimization opportunities

• Poorly supported by existing systems

59

Requirements for Temporal Pattern Matching

• Easily readable queries

• Compatible with event processing systems

• Process raw event streams

• Early result detection (low latency)

• Efficient query processing

60

FROM CARS PARTITION BY CAR_ID

DEFINE A AS ACCEL > 8 m/s²,

B AS SPEED > 75 mph,

C AS ACCEL < -9 m/s²

PATTERN A OVERLAPS B AND

B OVERLAPS C

TPStream*: Basic Ideas

• Input and Output are event streams

• Temporal patterns as binary constraints using Allen’s interval algebra

• E.g. Acceleration overlaps Speeding

• Tight coupling of derivation and matching

• Early results

61

*M. Körber, N. Glombiewski, B. Seeger: TPStream: Low-Latency and High-Throughput Temporal Pattern Matching on Event
Streams, will appear in Distributed and Parallel Databases

TPStream: Basic Ideas

• Input and Output are event streams

• Temporal patterns as binary constraints using Allen’s interval algebra

• E.g. Acceleration overlaps Speeding

• Tight coupling of derivation and matching

• Early results

62

Deriving Situations

• Situation: A period of time for which a set of conditions holds true

• Summarization of a continuous subsequence of events

• Defined via

• 𝜑: Predicate, e.g. 𝑠𝑝𝑒𝑒𝑑 > 75 𝑚𝑝ℎ

• Identify continuous subsequences

• 𝛾: Set of aggregates, e.g. 𝑎𝑣𝑔(𝑠𝑝𝑒𝑒𝑑),max(𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

• Summarize events of subsequence

• Δ: Optional duration constraints, e.g. 5𝑠 < 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 < 2min

• Restrict situations of interest

• Derived on the fly from incoming events

63

Deriving Situations - Example

Speeding:
𝜑: 𝑠𝑝𝑒𝑒𝑑 > 75𝑚𝑝ℎ
𝛾: 𝑎𝑣𝑔(𝑠𝑝𝑒𝑒𝑑)

Acceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 > 8𝑚/𝑠2

𝛾:𝑚𝑎𝑥(𝑎𝑐𝑐𝑒𝑙)

Deceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 < −9𝑚/𝑠2

𝛾:𝑚𝑖𝑛(𝑎𝑐𝑐𝑒𝑙)

Events:

t

Speed: 70 mph
Accel: 7 m/s²
…
Timestamp: 1

64

Deriving Situations - Example

Speeding:
𝜑: 𝑠𝑝𝑒𝑒𝑑 > 75𝑚𝑝ℎ
𝛾: 𝑎𝑣𝑔(𝑠𝑝𝑒𝑒𝑑)

Acceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 > 8𝑚/𝑠2

𝛾:𝑚𝑎𝑥(𝑎𝑐𝑐𝑒𝑙)

Deceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 < −9𝑚/𝑠2

𝛾:𝑚𝑖𝑛(𝑎𝑐𝑐𝑒𝑙)

Events:

t

Speed: 72 mph
Accel: 9 m/s²
…
Timestamp: 2

max(accel): 9 m/s²
Validity: [2,*)

65

Deriving Situations - Example

Speeding:
𝜑: 𝑠𝑝𝑒𝑒𝑑 > 75𝑚𝑝ℎ
𝛾: 𝑎𝑣𝑔(𝑠𝑝𝑒𝑒𝑑)

Acceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 > 8𝑚/𝑠2

𝛾:𝑚𝑎𝑥(𝑎𝑐𝑐𝑒𝑙)

Deceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 < −9𝑚/𝑠2

𝛾:𝑚𝑖𝑛(𝑎𝑐𝑐𝑒𝑙)

Events:

t

Speed: 76 mph
Accel: 10 m/s²
…
Timestamp: 3

max(accel): 10 m/s²
Validity: [2,*)

avg(speed): 76 mph
Validity: [3,*)

66

Deriving Situations - Example

Speeding:
𝜑: 𝑠𝑝𝑒𝑒𝑑 > 75𝑚𝑝ℎ
𝛾: 𝑎𝑣𝑔(𝑠𝑝𝑒𝑒𝑑)

Acceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 > 8𝑚/𝑠2

𝛾:𝑚𝑎𝑥(𝑎𝑐𝑐𝑒𝑙)

Deceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 < −9𝑚/𝑠2

𝛾:𝑚𝑖𝑛(𝑎𝑐𝑐𝑒𝑙)

Events:

t

Speed: 78 mph
Accel: 5 m/s²
…
Timestamp: 4

max(accel): 10 m/s²
Validity: [2,4)

avg(speed): 77 mph
Validity: [3,*)

67

Deriving Situations - Example

Speeding:
𝜑: 𝑠𝑝𝑒𝑒𝑑 > 75𝑚𝑝ℎ
𝛾: 𝑎𝑣𝑔(𝑠𝑝𝑒𝑒𝑑)

Acceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 > 8𝑚/𝑠2

𝛾:𝑚𝑎𝑥(𝑎𝑐𝑐𝑒𝑙)

Deceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 < −9𝑚/𝑠2

𝛾:𝑚𝑖𝑛(𝑎𝑐𝑐𝑒𝑙)

Events:

t

Speed: 76 mph
Accel: -10 m/s²
…
Timestamp: 5

max(accel): 10 m/s²
Validity: [2,4)

avg(speed): 76,6 mph
Validity: [3,*)

min(accel): -10 m/s²
Validity: [5,*)

68

Deriving Situations - Example

Speeding:
𝜑: 𝑠𝑝𝑒𝑒𝑑 > 75𝑚𝑝ℎ
𝛾: 𝑎𝑣𝑔(𝑠𝑝𝑒𝑒𝑑)

Acceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 > 8𝑚/𝑠2

𝛾:𝑚𝑎𝑥(𝑎𝑐𝑐𝑒𝑙)

Deceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 < −9𝑚/𝑠2

𝛾:𝑚𝑖𝑛(𝑎𝑐𝑐𝑒𝑙)

Events:

t

Speed: 72 mph
Accel: -11 m/s²
…
Timestamp: 6

max(accel): 10 m/s²
Validity: [2,4)

avg(speed): 76,6 mph
Validity: [3,6)

min(accel): -11 m/s²
Validity: [5,*)

69

Deriving Situations - Example

Speeding:
𝜑: 𝑠𝑝𝑒𝑒𝑑 > 75𝑚𝑝ℎ
𝛾: 𝑎𝑣𝑔(𝑠𝑝𝑒𝑒𝑑)

Acceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 > 8𝑚/𝑠2

𝛾:𝑚𝑎𝑥(𝑎𝑐𝑐𝑒𝑙)

Deceleration:
𝜑: 𝑎𝑐𝑐𝑒𝑙 < −9𝑚/𝑠2

𝛾:𝑚𝑖𝑛(𝑎𝑐𝑐𝑒𝑙)

Events:

t

Speed: 68 mph
Accel: -5 m/s²
…
Timestamp: 7

max(accel): 10 m/s²
Validity: [2,4)

avg(speed): 76,6 mph
Validity: [3,6)

min(accel): -11 m/s²
Validity: [5,7)

70

TPStream: Basic Ideas

• Input and Output are event streams

• Temporal patterns as binary constraints using Allen’s interval algebra

• E.g. Acceleration overlaps Speeding

• Tight coupling of derivation and matching

• Early results

71

Temporal Pattern

• Temporal Relation

• Basic building block of a pattern

• Based on Allen‘s interval algebra

• Example: Acceleration overlaps Speeding

• Temporal Constraint

• Disjunction of temporal relations

• Definition of alternatives

• Example: Acceleration overlaps OR meets Speeding

• Temporal Pattern

• Conjunction of temporal constraints

• Additional time window

• Example: (Acceleration overlaps OR meets Speeding) AND
(Speeding overlaps OR contains Deceleration) AND
(Acceleration before Deceleration)

72

Low Latency Matching (1)

• Revisit definitions of Allen‘s interval relations:

73

Low Latency Matching (1)

• Revisit definitions of Allen‘s interval relations:

• Each temporal relation can be detected/validated at 𝑡3 𝑡𝑑 𝑅

• Example : 𝑡𝑑(A overlaps B) = A.te

• We know A.ts < B.ts and B will definitely end at a later point in time

74

Low Latency Matching (1)

• Revisit definitions of Allen‘s interval relations:

• Each temporal relation can be detected/validated at 𝑡3 𝑡𝑑 𝑅

• Example : 𝑡𝑑(A overlaps B) = A.te

• We know A.ts < B.ts and B will definitely end at a later point in time

• Prefix groups allow detection/validation at 𝑡2 𝑡𝑑 𝐺

• Example: 𝑡𝑑(A overlaps OR finishes OR contains B) = B.ts

• Ordering of A.te and B.te does not matter

75

Experimental Results

76

• Query with 3 situations
• A before B AND B overlaps C

• Synthetic data (300M events)
• Varying window size

• Detection latency per temporal relation
• 2 situation streams
• 55s average duration
• Application time (event timestamps)

Group Patterns

77

Group Patterns I

• Detect groups of objects with similar behavior over time

• Similarity often refers to the spatial position of (moving) objects

• Two kinds of basic patterns

• Concurrency: Find all birds currently flying in south direction

• Mutual relationship: Find a group of gazelles heading towards a specific location

• Complex patterns are composed of temporal relationships instances of simple patterns

• Assumptions

• Every event has at least the following attributes

• unique object ID

• attribute to be analyzed (e.g., position)

• timestamp

78

Basic Group Patterns

• Generate snapshots of the objects at given points in time

• Concurrency

• Evaluate the predicate for every object on each snapshot

• All objects satisfying the predicate form a group

• Time intervals describe the lifetime of a group

• Mutual relationship

• Evaluate predicates for all pairs of objects on each snapshot (e.g. distance between)

• Generation of a graph with an edge if two objects fulfill the predicate

• Connected components inside the graph form groups

• Time intervals describe the lifetime of a group

79

Complex Group Patterns with TPStream

• Complex patterns

• Combination of simple patterns using TPStream

• Challenges

• Keep track of group development (leaves, joins, splits, merges)

• Efficient computation

• Example: Find a group of gazelles heading towards a specific location

• Predicate: First derivative of the distance < 0

• Distance shrinks

• Find a connected component inside the graph

• Distance between all members of the subgraph shrinks

80

Example

• Find planes that are moving close to each other over a certain distance

• What is the meaning of proximity?

• What is the minimum distance?

81

Literature

• Laube, P., Imfeld, S., & Weibel, R. (2005). Discovering relative motion patterns in groups of moving
point objects. International Journal of Geographical Information Science, 19(6), 639-668.

• Vieira, M. R., Bakalov, P., & Tsotras, V. J. (2009, November). On-line discovery of flock patterns in spatio-
temporal data. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in
geographic information systems (pp. 286-295). ACM.

• Dodge, S., Weibel, R., & Lautenschütz, A. K. (2008). Towards a taxonomy of movement patterns.
Information visualization, 7(3-4), 240-252.

• Sakr, M. A., & Güting, R. H. (2011). Spatiotemporal pattern queries. GeoInformatica, 15(3), 497-540.

• Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., ... & Theodoridis, Y.
(2013). Semantic trajectories modeling and analysis. ACM Computing Surveys (CSUR), 45(4), 42.

• Sakr, M. A., & Güting, R. H. (2014). Group spatiotemporal pattern queries. GeoInformatica, 18(4), 699-
746.

• Beilschmidt, C., Drönner, J., Glombiewski, N., Heigele, C., Holznigenkemper, J., Isenberg, A., ... & Seeger,
B. (2019, June). Pretty Fly for a VAT GUI: Visualizing Event Patterns for Flight Data. In Proceedings of the
13th ACM International Conference on Distributed and Event-based Systems (pp. 224-227). ACM.

82

Discussion

83

